
Origin™ Development Environment

Origin™ Servers Technical Report 119

Chapter 7 Origin™ Development Environment

This chapter describes the Origin development environment, with particular emphasis
on development of parallel applications. This chapter includes:

• Sequential Compiler Technology

• Parallel Compiler Technology

• Message-Passing Toolkit

• Silicon Graphics Cray Scientific Library

• Inter-Process and Inter-Thread Communication Support

• Application Development Tools

Origin systems support a variety of parallel programming tools. These include:

• Parallel Compilers as made available in such tools as the MIPSpro 7 Compilers and
High-Performance Fortran, supporting automatic and semi-automatic (directives)
parallelization techniques

• Message passing among CPUs as made available in such tools as MPI, PVM, and
Cray SHMEM

• Scientific & Math Libraries as made available in the Silicon Graphics Cray Scientific
Library (SCSL) and other third party libraries

• Operating system-based inter-process and inter-thread communication via
standards-based sockets, pthreads, and shared memory

The shared-memory programming model supported with the MIPSpro 7 Fortran and C
compilers provides an ideal combination of good performance and ease-of-use, with a
directive approach that maintains application portability. These compilers include
support data distribution across non-uniform shared memory, including a set of
directives for incrementally optimizing data layout.

Alternatively, MPI provides a vehicle to develop scalable applications via a standards-
based message-passing implementation for a given algorithm. Using MPI generally
adds some programming complexity due to the requirement that the programmer
explicity manage interaction among compute resources. MPI is widely used in research,
and, as a result, many programs have been written using the standard, and the MPI
standard is supported across a wide variety of system architectures and suppliers.
Originally intended as a data-sharing mechanism amongst multiple computers, the MPI
implementation on Origin systems employs the underlying S2MP architecture for high
bandwidth, low latency message passing between CPUs in an Origin system. The
Origin MPI implementation is highly optimized and provides superb message-passing
performance.

SCSL is a new, highly optimized scientific and math library, developed by Silicon
Graphics and Cray scientists and engineers, initially to be made available on the Origin
platform. Over time, SCSL will be made available on additional Silicon Graphics and
Cray platforms. SCSL is a merged version of Silicon Graphics’ CHALLENGEcomplib

Origin™ Development Environment

120 Origin™ Servers Technical Report

and Cray Research’s LibSci, that will, over time, supercede the functionality of both
these libraries. SCSL includes the implementation of a variety of well-recognized
scientific kernel and solver algorithms. These routines are optimized and parallelized for
the Origin system and S2MP architecture, providing an effective strategy to quickly
develop parallel, optimized scientific programs without tuning efforts.

Inter-process and inter-thread communication mechanisms are the underlying basis of
these aforementioned programming models. In some cases in which the above models
don’t apply (for example, database applications, some real-time simulations), inter-
process and inter-thread mechanisms are the basis for parallel implementation of these
applications. Cooperating processes or threads coordinate their activities using a
“client-server” or “producer-consumer” model. The Origin architecture, coupled with
the IRIX kernel, has been optimally tuned to support inter-process and, in particular,
inter-thread communication. Coupled with the scalable shared-memory-based S2MP
architecture, large numbers of CPUs (beyond classic SMP limitations) are able to share
and communicate data via a single shared-memory address space. Developers can scale
algorithms developed for classic distributed memory computer architectures, with the
benefit of low latency data sharing, minimal kernel overhead, and a simple shared-
memory address space programming model. These capabilities are accessible through
industry standard POSIX interfaces, classic Unix IPC interfaces, and IRIX specific
interfaces.

The other parallel programming models supported on Origin systems—SHMEM, PVM,
and HPF—are of primary interest to applications developers already using these models
on other systems. Each has its particular strengths. SHMEM is a simple, high-
performance form of message passing that originates from the Cray T3D and Cray T3E
development environment. PVM was once the de facto standard for message passing
and is still widely used. HPF has proven useful as an easy-to-program language for
explicit data parallel applications. Solid implementations of these models will become
available on Origin systems, making it easy to migrate applications using these tools.

7.1 Sequential Compiler Technology

7.1.1 Overview

The MIPSpro compilers for Cellular IRIX are the fourth-generation family of
optimizing and parallelizing compilers from Silicon Graphics. The compilers generate
32- and 64-bit optimized code for the new MIPS R10000 based Origin200, Origin2000,
and Onyx2 systems running Cellular IRIX. Supported Instruction Set Architectures
(ISAs) include both the MIPS 3 and MIPS 4 ISAs and full compliance with the new 32-
bit (n32) and 64-bit ABI’s. Compiler highlights include:

• Support for Fortran 90, Fortran 77, C, and C++

• State-of-the-art optimization and automatic parallelization technology

• New enhancements for Inter-Procedural Analysis (IPA)

• Comprehensive support for parallel application development

• Complete support for 32- and 64-bit development and execution

Origin™ Development Environment

Origin™ Servers Technical Report 121

The MIPSpro compilers for Cellular IRIX take advantage of all the performance-
oriented features of the MIPS R10000, MIPS R8000®, MIPS R5000, MIPS R4400, and
MIPS4000 microprocessors, including:

• Full access to all the hardware features

• Improved calling convention

• Usage of all 32 64-bit floating-point registers

• Usage of all 32 64-bit general-purpose registers

• DWARF debugging format

The MIPSpro compilers will not support MIPS 1 and MIPS 2 ISAs for old 32-bit
applications that are compliant with the old 32-bit ABI (o32).

Figure 7-1 illustrates the various components of the MIPSpro compilation system.
Components include the front end and common back ends that perform all scalar and
parallel optimizations and transformations. The compilers support value-added
extensions to:

• Enrich the basic functionality of the compilers

• Ease the porting of applications written for other platforms

• Boost run-time performance of applications

Figure 7-1 MIPSpro Compilation Structure

linker

(ld)
back end

(be)

Data Path Fork and Exec

WHIRL
(.B)

(fec/fecc/mfef77)
front end

driver
(cc/f77/f90/c++)

obj
(.o)

a.out/.so
src

(.c/.f)

Origin™ Development Environment

122 Origin™ Servers Technical Report

7.1.2 Optimizations

Compilers perform a range of general-purpose and architecture-specific optimizations
to improve application performance by reducing the number of instructions executed.
This fully utilizes the CPU’s instruction set, maximizes register use, minimizes memory
references, and eliminates unused or redundant code.

Memory hierarchy optimizations play a key role in matching the performance
capabilities of the fast, superscalar processor with the relatively slower main memory
system. The primary function of the cache subsystem is to bridge the gap between
processor and main memory speed. The compiler plays a crucial role in restructuring
programs to reduce cache misses by interchanging loops, or by tiling or blocking loop
nests so that data is consumed most efficiently by the processor. The compiler
restructures programs so that a useful subset of the problem can fit into the cache.

New optimization techniques take maximum advantage of the new processor features
such as on-chip and off-chip caches, pipelining, and superscalar chip architecture. The
optimizations are applicable to a wide range of applications and benefit both scalar and
parallel performance.

Assorted command-line options can leverage different combinations of optimizations.
In general, optimizations are spread across the compilation system for better efficiency.
For example, high-level optimizations such as loop interchange and loop unrolling are
done in the Loop Nest Optimization phase, whereas architecture-specific optimizations
such as software pipelining and automatic blocking are done in the Code Generation
phase. All optimizations are fine-tuned to take advantage of the new system. Key
sequential optimizations include:

• Statement level optimizations

– array expansion

– common subexpression elimination

– global constant propagation

– dead code elimination

• Architecture-specific optimizations

– software pipelining

– instruction scheduling

– automatic blocking

– register blocking

– array padding

– global instruction distribution

• Loop-level optimizations, including combinations of:

– loop unrolling

– loop interchange

– unroll-and-jam

– loop distribution

Origin™ Development Environment

Origin™ Servers Technical Report 123

– loop fusion

– loop invariant code motion

– sum reduction

• Procedure-level optimizations

– procedure inlining

– interprocedural analysis (IPA)

7.1.3 Optimization Technology in the MIPSpro Compilation System

Optimization technology is an integral part of the MIPSpro compilation system. High-
performance RISC microprocessors such as the MIPS R10000 offer huge performance
potential that may be harnessed by advanced optimization techniques. The optimizer
considers processor architecture, system architecture, and program characteristics when
restructuring programs for performance.

MIPSpro compilers perform a hierarchy of optimizations, ranging from fine-grained
instruction-level optimizations to coarse-grained parallelization through loops and tasks
to reduce application execution time. The optimization phases are spread across the
compilation system. Figure 7-2 illustrates the different kinds of parallelism exploited by
the compilers.

WHIRL, the new intermediate representation (IR) for the MIPSpro compilation system,
is designed to support C, C++, Fortran 77, and Fortran 90. WHIRL supports
compilation and optimization of program code for MIPS architectures. All high-level
and low-level optimizations are performed on WHIRL at the IR level. High-level
optimizations are performed in the early stages of the compilation process through
analysis and transformation of High-Level WHIRL IR. Key high-level optimizations
include loop-nest optimizations and interprocedural analysis. Automatic loop blocking
and loop interchange are memory hierarchy optimizations that key into the cache
architecture of the machine. Similarly, loop unrolling attempts to expose more
instruction-level parallelism to the optimizer for fine-grained parallelism.

Instruction-level optimizations are performed mostly in the common back end to get the
most performance out of the MIPS R10000 superscalar processor. Common instruction-
level optimizations include software pipelining, instruction scheduling, global
instruction movement, and register allocation. Other optimizations such as loop
distribution and loop fusion are important for efficient parallel execution. The compiler
uses extensive analysis and transformation techniques to detect parallelism in programs.
The compilation system supports a complete run-time environment for parallel
execution. This run-time library is common to all MIPSpro compilers.

Specific optimization techniques employed by the MIPSpro optimizer are described in
the following subsections.

Origin™ Development Environment

124 Origin™ Servers Technical Report

Figure 7-2 Optimization Technology in the MIPSpro Compilation System

Representation Translator/Lowering Action

F90
F77

Front ends

High-WHIRL

Optimization

Inter-procedural

Optimizations (IPA)

Loop-Nest

Optimizations (LNO)

Mid-WHIRL

Lower ARRAYs

Lower Complex Numbers

Lower high-level control flow

Global Optimizations

Insert incoming parameter fetches

Lower intrinsics to calls

Generate simulation code for 64-bit

Low-WHIRL

Register variable

identification (RVI)

RVI for base addresses

Expand offsets > 16 bits to multiple instructions

Very low-WHIRL

CG Machine

Instruction
Representation

Code generationInstruction Scheduling

Global Register Allocation (GRA)

Software Pipelining (SWP)

Spawn nested procedures for

Generate simulation code for quads

Very high-
WHIRL

C

Optimizations on aggregates

Lower aggregates

All data mapped to segments

C++

Replace integer multiply by shifts

Expose code sequences for constants

Convert all loads/stores to base and offset form

Map opcodes to target machine opcodes

Expand multiplication to shifts/adds

Expose $gp for -shared

Expose static link for nested procedures

parallelized regions
(WOPT)

and addresses

Origin™ Development Environment

Origin™ Servers Technical Report 125

7.1.4 Statement-Level Optimizations

7.1.4.1 Basic Block Optimizations

Basic optimizations are performed at optimization level 1 (-01) and are meant to create
efficient scalar code at the basic-block level for both C and Fortran programs. A basic
block is a sequence of statements ending with a condition or unconditional branch.
Many scalar optimizations are performed at the basic-block level to improve the
efficiency of the generated code. The following are some of the most common
optimizations performed at the basic-block level:

• Algebraic simplification

• Common-subexpression elimination

• Constant propagation and constant folding

• Dead-code elimination

The compiler also performs the full range of scalar optimizations, including:

• Invariant IF floating

• Loop unrolling and loop rerolling

• Loop fusion and loop peeling

• Array expansion

7.1.4.2 Global Optimizations

The compilers perform extensive global optimizations at optimization level 2 (-02) that
are usually beneficial to most applications, and are conservative in nature to ensure
integrity of the results of floating-point computations. The compiler performs memory
hierarchy optimizations to maximize reuse of data in the cache. Optimizations
performed at this level include:

• Global constant propagation to propagate and fold constants across basic blocks

• Control flow optimizations to remove redundant statements, delete unreachable
sections of the program, and combine different basic blocks into large basic blocks

• Strength reduction to replace expensive operations with simple ones

• Induction variable simplification

• Fenceposting

• Backward motion of region invariants

• Forward motion of stores

• Collapsingif statements

• Global copy propagation

• Arithmetic expression folding

• All -01 level optimizations

Origin™ Development Environment

126 Origin™ Servers Technical Report

7.1.4.3 Floating-Point Optimizations

Normally, compilers generate floating-point code that conforms to the IEEE 754
floating-point standard. However, many floating-point-intensive codes that were not
written with careful attention to floating-point behavior do not require precise
conformance with the source language expression evaluation standards or the IEEE 754
arithmetic standards. It is therefore possible to relax conformance restrictions in favor of
better performance. MIPSpro compilers provide a number of different command-line
options to accomplish this goal:

• Roundoff options

• IEEE floating-point options

• Reciprocal and reciprocal square-root

• Fast intrinsics

The -OPT:roundoff=n flag is available to determine the extent to which optimizations
are allowed to affect floating-point results, in terms of both accuracy and overflow/
underflow behavior.

The-OPT:IEEE_arithmetic=n flag specifies the extent to which optimizations should
preserve IEEE floating-point arithmetic.

The flexible floating-point options provide users with a range of alternatives to trade off
accuracy for speed. Thus applications can take advantage of fast MIPS 4 instructions
such asrecip andrsqrt.

In short, optimizing divides into multiplies by using reciprocal and by lifting the inverse
calculation outside the loop improve performance.recip and rsqrt are also important to
graphics applications that use the reciprocal and reciprocal square root operations in
important computational parts.

The MIPSpro compilation system supports a fast version of intrinsic library functions.
Specifically, frequently used intrinsics such as the transcendental functions (log, exp,
power, sin, cos, cis, and tan) are hand-coded in assembly and are part of a separate fast
mathematical library.

The fast math library can be invoked with the-lfastmcommand-line flag. The accuracy
level of all the hand-code transcendental functions (except fortan) is better than 2 ULPS
(units in the least-significant place).

7.1.4.4 Pointer Optimization

For many compiler optimizations, ranging from simply holding a value in a register to
the parallel execution of a loop, it is necessary to determine whether two distinct
memory references designate distinct objects. If the objects are not distinct, the
references are said to be aliases. When these references are pointers, there is often not
enough information available within a single function or compilation unit to determine
whether the two pointers are aliased. Even when enough information is available, the

Origin™ Development Environment

Origin™ Servers Technical Report 127

analysis can require substantial amounts of time and space. For example, it could
require an analysis of a whole program to determine the possible values of a pointer that
is a function parameter.

Compilers must normally be conservative in optimizing memory references involving
pointers (especially in languages like C), since aliases (i.e. different ways of accessing
the same memory location) may be very hard to detect. Consider the following example:

float x[100];
float *c;

void f4 (n , p , q)
int n;
float * p;
float * q;

for (i = 0 ; i < n ; i ++) {
p[i] = q[i] + c[i] + x[i] ;

}
}

To be safe, the compiler must assume that the pointer referencesp, q, andc may all be
aliased to each other. This in turn precludes the possibility of aggressive loop
optimizations by the optimizer.

MIPSpro compilers alleviate this problem of aliasing by providing users with a number
of different options for specifying pointer aliasing information to the compiler. The
compiler uses this information to perform aggressive optimizations in the presence of
pointers for healthy performance improvements. Table 7-1 illustrates various user
options for improving run-time performance.

Origin™ Development Environment

128 Origin™ Servers Technical Report

Table 7-1 User Options for Improving Run-time Performance

Flag Description

-OPT:alias=any Compiler should assume that any pair of memory references may be
aliases unless proven otherwise. This is the default setting in the
compiler and reflects a safe assumption by the compiler.

-OPT:alias=typed Compiler assumes that any pair of memory references that are of
distinct types cannot be aliased. For example:
void dbl (i , f) {
int * i;
float * f;

*i = *i + * i ;
*f = *f + *f ;
}
The compiler assumes thati andf point to different memory
locations as they are of different types. This can result in producing
anoverlappedschedule for the two calculations.

-OPT:alias=unnamed Compiler can assume that pointers will never point to named
objects. In the following example compiler will assume that the
pointer p cannot point to the objectq, and will produce an
overlapped schedule for the two calculations. This is the default
assumption for the pointers implicit in Fortran dummy arguments
according to the ANSI standard.
float g;
void double (p)
float* p;
{

g = g * g ;
*p = *p + *p ;

}

-OPT:alias=restrict Compiler should assume a very restrictive model of aliasing, where
no two pointers ever point to the same memory area. This is a rather
restrictive assumption, but when applied for specific well-
controlled, valid cases can produce significantly better code.
void double (p,q)
int*p;
int*q;
{
*p = *p + *p ;
*q = *q + *q ;

}

-OPT:alias=disjoint Compiler should assume a very restrictive model of aliasing, where
no two pointer expressions ever point to the same memory area.
This is a restrictive assumption, but when applied to specific well
controlled, valid cases can produce significantly better code.
void double (p,q,offset)
int*p;
int*q;
int offset;
{
*(p+offset) = *p + *p ;
*(q+offset) = *q + *q ;

}

Origin™ Development Environment

Origin™ Servers Technical Report 129

7.1.5 Architecture-Specific Optimizations

7.1.5.1 Advanced Optimizations

Compilers perform aggressive optimizations at level 3 (-03), focusing on best code
quality. Great flexibility is provided to enable combination of optimizations at this level
for maximum floating-point performance. Important superscalar optimizations such as
software pipelining are performed at this level.

7.1.5.2 Software Pipelining

In software pipelining, iterations of loops are continuously initiated at constant intervals
without having to wait for preceding iterations to complete. That is, multiple iterations,
in different stages of computation, are in progress simultaneously. The steady state of
this pipeline constitutes the loop body of the object code.

The R10000 can execute instructions out of order, so static scheduling techniques such
as software pipelining are not critical to its performance. However, the R10000 does
support the prefetch (pref) instruction. This instruction is used to load data into the
caches before it is needed, reducing memory delays for programs that access memory
predictably. Proper scheduling of prefetch instructions is an important optimization
described in greater detail below.

7.1.5.3 Data Prefetching

Data prefetching reduces or eliminates the latency associated with loading a cache line
of data from main memory into the secondary cache. The MIPS 4 instruction set
implemented by the MIPS R10000 processor supports a data prefetch instruction that
initiates a fetch of the specified data item into the cache. By prefetching a likely cache
miss sufficiently ahead of the actual reference, you can increase the tolerance for cache
misses. The MIPSpro compilers automatically estimate which references will be cache
misses and insert prefetches for those misses. In programs limited by memory latency,
prefetching can change the bottleneck from hardware latency time to the hardware
bandwidth.

7.1.6 Loop Optimizations

Most compute-intensive programs spend a significant portion of their execution time in
loops; the MIPSpro compilers spend a significant portion of their time in optimizing
loops in the program. Various techniques optimize the performance of loops, many of
them automatically enabled by the compilers at various levels of optimizations. The
MIPSpro compilers perform loop optimizations at optimization level 3 (-03). This
section explains important loop transformations performed by the MIPSpro compilers.

7.1.6.1 Loop Interchange

Loop interchange is a memory hierarchy optimization that modifies the data access
pattern of nested loops to match the way data is laid out in memory. For example, in a
typical Fortran 77 loop nest, Fortran stores array elements in column-major order (not

Origin™ Development Environment

130 Origin™ Servers Technical Report

row-major like most programming languages). Each iteration of the i loop steps across
contiguous elements ofA, while each iteration of the j loop steps over an entire column
of A. Assuming thatA is dimensioned asA (M, N), each iteration of thej loop steps
across M elements of A. If M is large, the loop nest may exhibit bad locality. As a result,
the program may spend a considerable portion of its time waiting for cache and TLB
misses.

Figure 7-3 Loop Comparison

This problem of the innermost loop having a large stride is eliminated by interchanging
the two loops, as shown in the right-hand example in Figure 7-3. Now the innermost
loop runs across contiguous elements, minimizing TLB misses and cache misses.
Depending on the dimensions of the arrays, the transformed loop may exhibit
significantly better run-time performance.

Another advantage of loop interchange is its ability to move parallelism to outer levels
of a nested loop. Before interchange, the innermostj loop can be parallelized by the
compiler. However, the amount of work performed within the j loop may not be
sufficient for efficient parallel execution. Once loop interchange is performed, the
parallelism moves to the outer loop, thereby increasing the amount of work in the loop.
In effect the compiler is able to parallelize a larger region of code for better
performance.

7.1.6.2 Loop Distribution

The compiler performs loop distribution to partition a single loop into multiple loops.
Loop distribution has the advantage of making a loop’s working set better fit the paging
structure of the underlying machine. It can also expose more parallelism to the compiler.
By distributing the loop into a sequential loop and a parallel loop, the compiler is able to
efficiently execute parts of the original loop in parallel. The multiple loops are usually
smaller (in body size) compared to the original loop and are more amenable to software
pipelining. Figure 7-4 illustrates this transformation:

do i = 1, m

do j = 1, n

a (i , j) = a (i-1 , j) + 1.0

enddo

enddo

do j = 1, n

do i = 1, m

a (i , j) = a (i-1 , j) + 1.0

enddo

enddo

Interchanged LoopOriginal Loop

Origin™ Development Environment

Origin™ Servers Technical Report 131

Figure 7-4 Loop before (left) and after (right) Distribution

The original loop (left) cannot be parallelized because of the data dependency arising
from the reference to array D. However, after distribution the first i loop can be
parallelized and theii loop software pipelined for performance.

7.1.6.3 Loop Fusion

Loop fusion, the inverse of loop distribution, involves “jamming” two originally
separate loops into a single loop. Figure 7-5 illustrates this transformation.

Figure 7-5 Loop before (left) and after (right) Fusion

Loop fusion can be used in many cases to combine two loops, each of which utilizes a
large portion of the page space of the machine. The fused loop can have a working set
that is smaller than the sum of the two individual loops, improving data reuse, and
permitting better register allocation. In Figure 7-5, after loop fusion the elements of
arrayA are immediately available for use by the second statement in each iteration. The
optimizer recognizes the reuse of elements ofA and keeps them in registers for the
operation.

do i = 1 , m

a (i) = b (i) + c (i)

d (i) = d (i + 1) + e (i)

enddo

do i = 1 , m

a (i) = b (i) + c (i)

do ii = 1 , m

d (ii) = d (ii + 1) + e (ii)

enddo

enddo

do ij = 1 , m

a (ij) = b (ij) + c (ij)

d (ij) = a (ij) + e (ij)

enddo

do i = 1 , m

a (i) = b (i) + c (i)

do j = 1 , m

d (j) = a (j) + e (j)

enddo

enddo

Origin™ Development Environment

132 Origin™ Servers Technical Report

Loop fusion can also increase the size of loops to improve the efficiency of parallel
execution. By combining two small loops into a bigger loop, fusion sets the stage for
profitable parallelization of the bigger loop. In Figure 7-5, the two individual loops may
be too small to overcome the overheads of parallelization. However, the combined loop
after fusion may be large enough to realize performance improvements from
parallelization.

7.1.6.4 Loop Blocking

Loop blocking is an effective technique available in the MIPSpro compilers for
optimizing the performance of the memory hierarchy for numerical algorithms. The
reason for blocking is that entire matrices typically do not fit in the fast data storage (for
example, the register file or cache) of the machine. Figure 7-6 shows the change in the
memory access pattern as a result of loop blocking.

Figure 7-6 Memory Reference Pattern before (top) and after (bottom) Loop Blocking

Memory
Address (MB)

Time

Address (MB)

Time

0

2

4

6

8

0

2

4

6

8

Loop blocking to improve cache reuse

Origin™ Development Environment

Origin™ Servers Technical Report 133

Blocking decomposes matrix operations into submatrix operations, with a submatrix
size chosen so that the operands can fit in the register file or cache. Since elements of a
submatrix are reused in matrix operations, this reduces slow memory accesses and
speeds up the computation.

Thebeforepicture in Figure 7-6 references four sets of consecutive addresses over a
certain period of time before repeating the access pattern. Blocking restructures the loop
to reflect the memory access pattern illustrated in theafter picture. Here, subsets of all
four data sets reside in cache and are accessed in a shorter period of time. This
arrangement enables useful computation to be performed efficiently on a cache-resident
subset of the original dataset before moving on to the next subset. Performance
improvements come from reduced processor-to-main-memory traffic as a result of
efficient cache utilization.

7.1.6.5 Loop Unrolling

Loop unrolling is a fundamental transformation that is a basic component of other
restructuring techniques like software pipelining and unroll-and-jam. The unrolling of
outer loops of nested loop regions is usually important for good use of the memory
hierarchy. Unrolling of inner loops improves the usage of the floating-point registers
and provides more room for instruction overlap. Unrolling decreases the trip count of
loops, thereby reducing the loop’s conditional branch overhead.

The number of times a loop should be unrolled (unrolling factor)is determined by the
compiler, based on numerous considerations, including the amount of data referenced in
the loop body, the data access dependencies, the availability of registers, the size of data
cache, and the purpose of unrolling. Figure 7-7 illustrates the process of unrolling.

Figure 7-7 Loop before (left) and after (right) Unrolling

Here unrolling the loop exposes a lot of instruction-level parallelism, as the different
assignments in the unrolled loop can be overlapped for performance.

7.1.6.6 Loop Multiversioning

Multiversioning is a technique employed by the compiler to improve the efficiency of
parallel performance. Many loops, especially in Fortran, use symbolic bounds as trip
counts, which cannot be determined at compile time. However, the compiler can

do i = 1, n

v (i) = v (i - 2) + X * w (i)

enddo

do i = 1 , n , 4

v (i) = v (i - 2) + X * w (i)
v (i + 1) = v (i - 1) + X * w (i + 1)
v (i + 2) = v (i) + X * w (i + 2)
v (i + 3) = v (i + 1) + X * w (i + 3)

enddo

Origin™ Development Environment

134 Origin™ Servers Technical Report

generate multiple versions of the original code at compile time. The resulting program
will execute the appropriate path depending on the loops’s trip count as determined
dynamically at execution time. Figure 7-8 shows an example.

Figure 7-8 Loop before (left) and after (right) Multiversioning

Multiversioning improves the overall efficiency of parallel execution by using accurate
information at program execution time.

7.1.7 Procedure-level Optimizations

7.1.7.1 Procedure Inlining

The compilers provide for automatic and user-directedinlining of functions and
subroutines in Fortran 77, C, and C++ programs. Inlining is the process of replacing a
function reference with the text of the function. This process eliminates function call
overhead and improves the effectiveness of numerous scalar and parallel optimizations
by exposingthe relationships AMONG function arguments, returned values, and the
surrounding code.

The compilers provide command-line options to direct the inlining of the specified list
of subroutines. Flags are available to limit inlining to routines that are referenced in
deeply nested loops, where the reduced call overhead or enhanced optimization is
multiplied. Options exist to perform interprocedural inlining, whereby instances of
routines can be inlined across different files.

One drawback of unlimited inlining is its tendency to increase the code size of the
resulting program. Uncontrolled replacement of function or subroutine calls with the
actual body of the called routine can cause “code explosion,” which in turn increases

do i = 1, n
v (i) = v (i) + X * w (i)

enddo

if (n > 100) then

do i = 1 , n

v (i) = v(i) + X * w(i)

enddo
else

do i = 1, n

v(i) = v(i) + X * w(i)

enddo

enddo

/* run this loop in parallel */

/* run this loop sequentially */

Origin™ Development Environment

Origin™ Servers Technical Report 135

compile time and reduces the effectiveness of other optimizations. The technique of
Interprocedural Analysis (IPA) provides the benefits of inlining without necessitating
inlining the code.

7.1.7.2 Interprocedural Analysis (IPA)

MIPSpro compilers for Cellular IRIX have comprehensive support for IPA as an
optional phase of the compilation system. Figure 7-9 illustrates the architecture of the
IPA phase of the MIPSpro compilation system.

Figure 7-9 IPA Compilation Model

IPA analyzes the interactions between multiple program units (PUs) and passes critical
cross-module (global) information to the common back end, which then proceeds to
utilize this information when compiling individual PUs one at a time.

IPA tracks the flow of control and data across procedurAL boundaries and uses this
information to drive the optimization process. IPA is particularly useful for performing
interprocedural inlining and interprocedural constant propagation, which enables
routines with incoming loop bounds information to be available at compile time. This
ability can be useful for driving optimization decisions. Figure 7-10 shows an example.

IPA can be turned on by using the -ipa[=list] option to specify the degree of IPA to be
performed.

WHIRL
(.B)

a.out/.so

Data Path Fork and Exec

(fec/fecc/mfef77)

front end pre-IPA
(ipl)

WHIRL
(.o)

driver

(cc/f77/f90/c++)

driver
(cc/f77/f90)

main IPA
(ipa)

WHIRL
(.B)

src
(.c/.f)

back end
(be)

obj
(.o)

linker
(ld)

Origin™ Development Environment

136 Origin™ Servers Technical Report

Figure 7-10 Loops with and without Interprocedural Analysis

In this example, the value ofn is used as a loop bound within the subroutinefoo. In the
absence of IPA, the compiler assumes that the value ofn is modified inside the call to
subroutine foo. Moreover, the value ofn on entry to subroutinefoo will not be known at
compile time. As a result, the compiler must generate multiversion code when
parallelizing thej loop withinfoo.

However, with IPA turned on, it is possible to know (at compile time) the value ofn on
entry tofooat the call site. This information is then used by the automatic parallelizer to
decide how to parallelize thej loop in subroutinefoo. If the value ofn is small, the loop
may not be profitably parallelized. On the other hand, if the value ofn is large, the loop
gets parallelized for profitable execution.

In short, IPA provides a mechanism to propagate information across procedure
boundaries without having to inline calls, thereby increasing the effectiveness of all
optimizations.

The main IPA optimization consists of four phases. The first phase is a quick pass
through all the input files (including relocatable objects and shared objects) to read in all
the summary information as well as performing global symbol resolution. The second
phase performs the analysis. Based on the results of the analysis, the third phase
performs the optimization and actual code transformations. The fourth phase which
performs recompilation analysis and decides if any already-compiled objects can be
reused without recompilation, is optional.

...
do i = 1 , 100

call foo (a, b, n)

enddo

subroutine foo (a , b , n)
real a (*) , b (*)
integer n

do j = 1 , n

a (j) = a (j) + X * b(j)

enddo

n = 1000

end

Origin™ Development Environment

Origin™ Servers Technical Report 137

7.2 Parallel Compiler Technology

7.2.1 Parallelization

The MIPSpro Power compilers (MIPSpro Power Fortran 77 and MIPSpro Power C)
support automatic and user-directed parallelization of Fortran and C applications for
multiprocessing execution. The compilers employ automatic parallelization techniques
to analyze and restructure user applications for parallel execution, as preferred by users
who rely on the compilers to parallelize their applications.

The compilers automatically detect program parallelism by using data dependency
analysis. Both Fortran 77(-pfaflag) and C(-pcaflag) compilers have this capability.
Data dependence information is also used by a number of loop transformations listed in
previous sections of this chapter.

The compilers also provide a comprehensive set of standards-based comment directives
that enable users to assist the compiler in the parallelization process. Included are the
proposed ANSI-X3H5 standard (Parallel Computing Forum) directives as well as the
SGIdoacross directive. Users can use these directives to provide additional information
to the compiler to boost parallel performance. These are enabled by the-mpflag for
both Fortran and C. A loader flag also allows specifying local common blocks.

Two examples of parallelization with comment directives are shown in Figure 7-11.
These examples demonstrate the use of conditional parallelism for ensuring that
parallelism occurs only under certain dynamic conditions. In the two examples shown,
theif clause in the directive specifies the conditions for parallel execution. In the Fortran
77 example, the loop executes in parallel only if the value of jmax is greater than 1,000.
Similarly, the C example executes in parallel only if the value of max is greater than
1,000.

Additional clauses and directives exist for specifying:

• iteration schedule (simple, dynamic, etc.)

• local and shared variables

• saving the last local value of variables

• reduction variables

• copying in of local common block data from the master thread

Barriers and locks are available through the runtime library. The explicit creation and
destruction of parallel threads can be controlled by calls to the runtime library.
Alternatively, an environment variable may be used if the threads are to be created once
only. The runtime also supports dynamic threads, where the number of threads used to
execute a parallel loop is determined at runtime based on system load. That feature is
controlled through environment variables.

Origin™ Development Environment

138 Origin™ Servers Technical Report

Figure 7-11 Fortran and C Parallelization Examples

7.2.1.1 Data Distribution Directives

The MIPSpro compilers recognize comment-based directives specifying how data
should be distributed among multiple processors on Origin systems. Although Origin
provides cache-coherent shared-memory in hardware, memory is physically distributed
across processors (see Figure 7-12 below). Consequently, references to locations in the
remote memory of another processor take approximately two times longer to complete
than references to locations in local memory. This can impact the performance of
programs that suffer from a large number of cache misses. To obtain good performance,
it is important to schedule computation and distribute data across the underlying

continue30

continue35

c (i , j) = y

y = pi2 * x

x = a (i , j) + b (i , j)

do 30 i = 1, imax

do 35 j = 1 , jmax

c$doacross if (jmax > 1000) share (pi2, jmax, imax, a, b, c)

c$local (i, j, x) lastlocal (y)

for (i = 0 ; i < max ; i++)

b [i] = const * a [i] ;

becomes

#pragma parallel if (max > 1000) shared (a , b)
#pragma local (i) byvalue (max, const)
{

#pragma pfor iterate (i = 0 ; max ; 1)

for (i = 0 ; i < max ; i++)

b [i] = const * a [i] ;

}

/* Parallelizing a simple C for loop */

C Example of a directive based parallel Fortran 77 loop.

Origin™ Development Environment

Origin™ Servers Technical Report 139

processors and memory modules respectively, so that most cache misses are satisfied
from local rather then remote memory. These data distribution directives enable user
control over data placement and computation scheduling.

Figure 7-12 Memory Layout for Origin Systems

Cache behavior continues to be the largest single factor affecting performance, and
programs with good cache behavior usually have little need for explicit data placement.
In programs with high cache misses, if the misses correspond to true data
communication between processors, then data placement is unlikely to help. For such
programs it may be necessary to redesign the algorithm to reduce interprocessor
communication. However, if misses are to data referenced primarily by a single
processor, then data placement may be able to convert remote references to local
references, thereby reducing the latency of the miss.

Three possible options for data placement are automatic page migration, explicit page-
level (regular) data distribution, and reshaped data distribution. The later two options are
through the use of compiler directives.

Automatic page migration requires no user intervention and is based on the run-time
cache miss behavior of the program. It can therefore adjust to dynamic changes in the
data reference patterns. However, page migration heuristics are deliberately
conservative and may be slow to react to changes in the reference patterns. They are also
limited to performing page-level allocation of data.

Regular data distribution supports page-level allocation whereby the programmer
explicitly defines the distribution of data. This option is useful when the page migration
heuristics are slow and the desired distribution is known to the programmer.

Reshaped data distribution overcomes the page-level allocation concurrents imposed by
regular data distribution by remapping the data into discrete chunks, which can then be
placed in local memory for a specific processor. Since reshaping reorders the array

• • •

Processor

Cache

Processor

Cache

HUBMemory

Processor

Cache

Processor

Cache

HUBMemory

CrayLink Interconnect

Origin™ Development Environment

140 Origin™ Servers Technical Report

elements in physical memory, it is only useful if a data structure has the same (static)
distribution for the duration of the program. Unlike automatic page migrations and
regular data distribution, reshaped data distribution imposes certain rules and
restrictions that can limit its use. Since each data placement method is useful under
different conditions, the MIPSpro compilers support all three data placement
alternatives to provide a range of options.

The programming support for data distribution consists of extensions to existing Power
Fortran/C directives. The new directives are summarized in Table 7-2. Like the other
Power Fortran/C directives, these new directives are ignored except under MP
compilation(-mpflag).

Origin™ Development Environment

Origin™ Servers Technical Report 141

Table 7-2 Power Fortran/C Directives

Data distribution may be specified for any local, global, or common-block array. Each
dimension of a multidimensional array may be independently distributed. The possible
distribution types for an array dimension are BLOCK, CYCLIC(<expr>), and “*”
(meaning the dimension is not distributed). A BLOCK distribution partitions the
elements of the dimension of size N into P blocks (one per processor), with each block
of size B = N/P. A CYCLIC(k) distribution partitions the elements of the dimension into
pieces of sizek each and distributes them in a round-robin fashion across the processors.
A distributed array is distributed across all the processors being utilized in that
particular execution of the program.

The MIPSpro compilers provide a number of query intrinsics that may be used to obtain
information about the distribution of an array at run-time.

7.2.2 High-Performance Fortran

HPF (High-Performance Fortran) consists of extensions to ISO/ANSI Fortran 90
language that allow a developer to specify distribution of data, alignment of data objects
to one another, and to assert the independence of loop iterations. A FORALL statement
and Fortran 90’s array syntax and intrinsics provide the syntax for performing parallel
operations on the distributed data. Implementations of HPF are available today for
Origin systems from several vendors, including the Portland Group’s PGHPF.

7.3 Message-Passing Toolkit

In addition to the MIPSpro parallel compilers for automatic and semi-automatic parallel
development, the Message-Passing Toolkit is also available for scalable application
development. Given the underlying low-latency, high-bandwidth S2MP architecture,

Directive Purpose

c$distribute A (<dist> , • • •) Data distribution

c$redistribute A(<dist> , • • •) Dynamic data redistribution

c$dynamic A Redistributable annotation

c$distribute_reshape B(<dist> , • • •) Data distribution with reshaping

c$page_place (<addr> , <size> , <thread>) Explicit placement of data

c$doacross affinity (i) = data (A(i)) Data affinity scheduling

c$doacross affinity (i) = thread (<expr>) Thread affinity scheduling

c$doacross nest (i,j) Nested doacross

Origin™ Development Environment

142 Origin™ Servers Technical Report

scalable algorithms may be implemented using message-passing constructs with very
high-performance results. Three alternative message-passing interface libraries are
supported: MPI, PVM, and SHMEM. For developers employing distributed-memory
message passing, MPI is the recommended interface for new development. The PVM
and SHMEM libraries are primarily intended for migrating existing applications to the
Origin2000 environment.

7.3.1 MPI Message-Passing Interface

MPI is a standard message-passing library interface developed by the MPI Forum, a
broadly based group of parallel computing vendors, parallel library writers, and
application scientists. MPI serves as a lower-level message-passing infrastructure for a
wide range of higher-level distributed parallel applications across different parallel
platforms.

The MPI library includes routines for:

• point-to-point communication

• collective communication

• group management

• communicator management

• environment management

• profiling

MPI specifies bindings for Fortran 77 and C. Version 1.1 of the MPI Standard is
supported on Origin systems running IRIX 6.4. Silicon Graphics has actively optimized
the library to run effectively across sockets, shared memory, HIPPI, and CrayLink.
These optimizations have been performed without modification to the MPI standard and
are transparent to the MPI developer.

7.3.1.1 The Implementation of MPI on Origin Systems

Due to the high-bandwidth/low-latency characteristics of the Origin’s S2MP
architecture, performance of MPI on Origin is outstanding, particularly in contrast to
implementations of massively parallel systems architected as loosely coupled, LAN and
switch-based cluster architectures. The distributed-memory architecture assumed by
MPI easily maps into the S2MP architecture, and the MPI library has been carefully
tuned to exploit the underlying S2MP architecture for maximum message-passing
performance.

The implementation of MPI takes advantage of the Origin system’s cache-coherent,
shared memory to support lightweight, reliable message passing between CPUs.
Message passing overhead is minimal due to the library routines’ underlying ability to
share data with other MPI processes without costly kernel and network protocol
overhead. The scalable-bandwidth and low-latency characteristics of the multi-
dimensional CrayLink interconnect ensure that messages are efficiently passed between
CPUs. In addition, MPI application performance is enhanced by Origin-specific

Origin™ Development Environment

Origin™ Servers Technical Report 143

memory locality optimizations (again, transparent to the MPI application), whereby the
message queue and process buffers of a given MPI process are implemented in the local
memory of the CPU executing that process.

Furthermore, in addition to the standard socket-based MPI communication for network-
based communication, the MPI Library has also been tuned for optimal performance in
multi-system image configurations that employ either HIPPI as the interconnect
between systems. To support these mixed configurations, the MPI Library is aware of
the underlying topology, intelligently exploiting the optimal message-passing path
between CPUs.

7.3.1.2 XMPI Support

In addition to the MPI Library, Silicon Graphics will actively support and distribute
XMPI, a GUI-based execution and debugging environment for MPI applications,
developed by the Ohio Supercomputer Center.

XMPI is an X/Motif based graphical user interface for running, debugging, and
visualizing MPI programs. Extensive MPI information is extracted from a running
application on demand, or from a cumulative log of communication. Both sources are
tightly integrated with an application overview window and any number of single
process focus windows. Key features include:

• runtime snapshot of MPI process synchronization

• runtime snapshot of unreceived message synchronization

• single process focus detailing communicator, tag, message length, and datatype

• runtime and post-mortem execution tracing with timeline and cumulative
visualizations

• highly integrated snapshot from communication trace timeline

• process group and datatype type map displays

• assembles MPI applications from local or remote programs

• easy startup and takedown of applications

7.3.2 PVM Parallel Virtual Machine

PVM, originating from the Oak Ridge National Laboratory and the University of
Tennessee at Knoxville, is another message-passing library used for parallel processing
across a heterogeneous collection of computers. PVM allows applications to be
partitioned into multiple processes for concurrent execution on different hosts. Each
host can itself be a parallel computer, with multiple processors connected by a
proprietary network or shared memory. For Origin systems, PVM Version 3.3.10 is
supported. Message passing between CPUs in an Origin system uses shared-memory
techniques (as described above for MPI). In addition, a socket-based TCP/IP interface
exists for communication among Origin and other systems supporting PVM.

Origin™ Development Environment

144 Origin™ Servers Technical Report

7.3.3 Cray SHMEM Shared-Memory Library

Cray SHMEM is a library of functions originally implemented for the CRAY T3D to
provide a message-passing interface taking advantage of the global addressability/
distributed memory architecture of the CRAY T3D. The success of this library led to its
implementation on Cray’s parallel vector systems, the CRAY T3E, and the Origin
family of systems. The Cray SHMEM library includes support for:

• “one-sided” message passing get and put interfaces

• synchronization barriers

• critical region locks

• scatter/gather of remote data

• one-to-all broadcasting

• arithmetic reduction functions

Implementing SHMEM functions on a shared-memory system is straightforward, and
an optimized implementation is available for Origin systems. The set of SHMEM
functions being implemented for Origin is intended to be a subset of the library
functions on the Cray MPP systems. The availability of SHMEM on Origin systems
provides for Cray MPP applications to be easily moved between Cray MPP and Origin
systems, and provides Origin developers with a programming option that may prove
useful for some applications.

7.4 Silicon Graphics Cray Scientific Library

SCSL is a new scientific and math library initially available on Origin systems that will
become the standard scientific library available on IRIX-based platforms over time, as
well as Cray platforms that support IEEE arithmetic (SciLib continues for other Cray
platforms). The intention of this new library is to merge the functionality of Silicon
Graphics’ CHALLENGEcomplib and Cray Research’s SciLib into one standard library,
and to improve the overall quality of the library. In total, applications originally written
for the previous generation of libraries will easily migrate to the SCSL library. SCSL
routines minimize code development effort, saving programmer time and expense, and
maximizing code performance.

The first release of SCSL includes routines to solve systems of linear equations, FFTs,
eigenvalue problems, and matrix manipulations. Future releases will include signal/
image processing functions and sparse matrices. SCSL routines are callable from
Fortran77, Fortran 90, or C programs. Most routines are supported in a wide variety of
data types, including INTEGER*4, REAL*4 (single-precision), REAL*8 (double-
precision), COMPLEX*8 (single-precision complex), and COMPLEX*16 (double-
precision complex). The first release of SCSL includes:

• The BLAS (Basic Linear Algebra Subprograms) library provides many important
linear algebra building blocks. These operations include, but are not limited to,
matrix multiply, rank updates, and dot products. SCSL contains more than 130
BLAS routines, including:

– BLAS1 - Vector-vector operations

Origin™ Development Environment

Origin™ Servers Technical Report 145

– BLAS2 - Matrix-vector operations

– BLAS3 - Matrix-matrix operations

• LAPACK is a transportable library of subroutines for solving the most common
dense linear algebra problems: systems of linear equations, linear least squares
problems, eigenvalue problems, and singular value problems. LAPACK consists of
routines for:

– Symmetric and Nonsymmetric linear systems of equations

– Symmetric and Nonsymmetric eigenvector/value

– Singular Value Decomposition (SVD)

– Linear Least Squares

• The FFT library currently consists of routines that perform mixed-radix fast Fourier
transforms. The convolution functions currently support single- and double-
precision real data, having capabilities to do both pre- and post-tapering as either
convolutions or correlations. FFT supported functions include:

– multiple one-dimension mixed radix

– one-, two-, and three-dimension mixed radix

– single- and double-precision, for both real and complex data types

Note that the CHALLENGEcomplib is also available on Origin systems, for backward
compatibility, but over time, the functionality and performance of SCSL will supercede
that of CHALLENGEcomplib.

7.5 Inter-Process and Inter-Thread Communication Support

The term inter-process communication (IPC) describes any method of coordinating the
actions of multiple processes, or sending data from one process to another. IPC is
commonly used to allow processes to coordinate the use of shared data objects; for
instance, to let two programs update the same data in memory without interfering with
each other, or to make data acquired by one process available to others.

IRIX is compatible with a broad variety of IPC mechanisms. IRIX conforms to the
POSIX® standards for real-time extensions (IEEE standard 1003.1b) and threads (IEEE
1003.1c). IRIX additionally supports IPC features compatible with BSD UNIX and
AT&T® System V Release 4 (SVR4) UNIX. In addition, the IRIX-specific sproc()
system call and associated routines preceded definition of the POSIX standards and are
primarily available for backward compatibility.

For new development, the use of the POSIX mechanism is generally recommended due
to its portable interface and efficient, high-performance access to the underlying
hardware and kernel. The following functionality is available via POSIX-compliant
interfaces:

• Shared Memory: A way to create a segment of memory that is mapped into the
address space of two or more processes, each of which can access and alter the
memory contents

• Semaphores: Software objects used to coordinate access to countable resources

Origin™ Development Environment

146 Origin™ Servers Technical Report

• Locks, Mutexes, and Condition Variables: Software objects used to ensure exclusive
use of single resources or code sequences

• Message Queues: Software objects used to exchange an ordered sequence of
messages

• Signals: A means of receiving notice of a software or hardware event,
asynchronously

Features supported by other mechanisms are as follows:

• IRIX proprietary library calls (sproc(), et.al.) are provided for shared memory,
semaphores, locks, and barriers.

• AT&T System V Release 4 compatible system function calls are provided for signal
handling, shared memory, semaphores, message queues, and file locking.

• BSD UNIX compatible functions are provided for signal handling, file locking, and
socket support.

• Multitasking, as defined by the Ada95 programming language, is also supported
within Ada95 programs, using an underlying inter-thread communication method.

7.6 Application Development Tools

Writing programs that run on multiple processors and take maximum advantage of the
hardware is a complex and difficult task. Debugging and tuning these programs is even
more difficult. To address these problems, Silicon Graphics ProDev WorkShop
programming environment is specifically designed to facilitate the development of
parallel programs. WorkShop tools to assist the advanced developer include:

• Debugger

• Static Analyzer

• Test Coverage Tool

• Pro MPF Parallel Loop Analyzer (optional)

In addition, the Silicon Graphics SpeedShop tool allows customers to run experiments
and generate reports to track down the sources of performance problems.

7.6.1 ProDev WorkShop

ProDev WorkShop is a complete programming environment with excellent support for
parallel program development. WorkShop consists of multiple tools, including the
Debugger, the Static Analyzer, and the Performance Analyzer.

• The Debugger is a suite of tools that supports the debugging of parallelized
programs.

• The Static Analyzer analyzes source code and helps developers navigate and
visualize their code structures.

• The Performance Analyzer provides profiling capabilities for each thread of
execution of a parallel program.

Origin™ Development Environment

Origin™ Servers Technical Report 147

WorkShop Pro MPF is an optional WorkShop module that cooperates with the MIPSpro
Power Fortran 90 and MIPSpro Power Fortran 77 compiler to facilitate development,
tuning, and execution of parallel Fortran 90 and Fortran 77 programs. WorkShop
includes advanced features for C++ and Ada95 programming such as exceptions and
task views.

7.6.1.1 ProDev WorkShop Debugger

The WorkShop Debugger is a state-of-the-art, source-level debugger featuring multiple
graphical views that are dynamically updated during program execution. It was written
from the ground up to support advanced technology, and it is tightly integrated with the
performance analyzer, providing increased efficiency for overall program analysis.

• Enhanced productivity through visualization
Tools such as the 3D Array Visualizer and the Structure Browser allow users to
identify problems in their code by examining the visual representation of the
expressions or data. The WorkShop debugger provides 15 different “views” into a
program that are dynamically updated as a user steps through a program.

• Multiple-process and distributed source-level debugging
The WorkShop Debugger provides source-level debugging support for programs that
have multiple processes or have been parallelized. It permits automatic or manual
specification of process groups and provides individual and group process control.
Several processes can be debugged at one time. Traps, break points, and watch
points can be set on a single thread or on all threads. The relevant source for each
process and any related views, such as variables and expressions, are highlighted at
any specified point during the debugging session. The WorkShop Debugger is based
on a client/server model, allowing distributed debugging.

• Machine-level debugging
Three views provide powerful machine-level debugging capabilities: Register View,
Memory View, and Disassembly View. Each view allows the modification of the
values that it displays. Register View shows the current register field, as well as the
register value, which can be modified, and provides a register display area. Memory
View allows you to look at and modify memory. The memory display area shows the
contents of individual byte addresses. The Disassembly View provides the ability to
set break points in the disassembled source, and provides “Continue To” and “Jump
To” options for machine-level instructions. Other options include the ability to
disassemble a specified number of lines, starting from a specified source line
address, from the beginning address of a specified function name, or starting from
the address corresponding to a specified file.

7.6.1.2 ProDev WorkShop Static Analyzer

The Static Analyzer is a visual source code navigation and analysis tool. It provides the
ability to visualize program structure and allows easy navigation through code, which is
vital for restructuring and reengineering existing software. Its graphical presentation of
code structure makes it easy to understand, even for someone who is not the original
developer. It is helpful in porting situations, when code that is being ported to other

Origin™ Development Environment

148 Origin™ Servers Technical Report

platforms will not run or compile. It provides excellent performance on complex Fortran
programs, and is useful for analyzing legacy code. It provides multiple queries into code
structure, such as queries on functions, classes, variables, and common blocks.

7.6.1.3 ProDev WorkShop Performance Analyzer

Performance tuning is one of the most difficult programming tasks. Tuning
multithreaded applications is even more difficult. The Performance Analyzer is an
integrated collection of tools that measures, analyzes, and helps to improve application
performance. Tightly integrated with the WorkShop debugger, it allows the user to
visualize a program’s performance over separate phases of execution and correlate the
information back to the source code. All the views show performance statistics on a per-
thread basis and provide the ability to correlate the performance of all threads.

• Task-oriented data collection
The Performance Analyzer is designed on a task basis, facilitating the tuning
process. Users can choose from a number of performance tasks:

– Determine bottlenecks, identify phases

– Get Total Time per function and source line

– Get CPU usage per function and source line

– Get Ideal Time per function and source line

– Trace I/O activity, system calls, page faults

– Find memory leaks

– Find floating-point exceptions

It also allows the creation of custom tasks, allowing the user to collect data on
function counts and basic blocks and do program counter (PC) profiling. A unique
feature of the Performance Analyzer is that it allows the user to specify and collect
data during different states of the program’s execution through the use of a sampling
paradigm. This allows the user to collect information at specified poll point intervals,
through the use of sample break points, or interactively with manual sampling.
These sample points can then be used to specify phases of program execution. These
phases are visually indicated on an experiment timeline. The phases can then be
analyzed individually to determine the resource that is causing the bottleneck.

• Rapid identification of expensive functions
Among the multiple views in the Performance Analyzer is the function list, which
displays all the functions in the program, highlights expensive functions both
graphically and at the source level, shows the associated performance usage, and
suggests more efficient program ordering.

• Multiple graphical views
The Performance Analyzer has an integrated set of graphical views that visually
represent performance data. These views can be seen on a per-thread basis.

– Resource Usage View to analyze resource usage consumption of the program
over different phases of execution. Graphical strip charts are used to display
resources such as CPU time, page faults, and context switches.

– Call Graph View to display a call graph of the program that is annotated with
user-specified profiling information for rapid understanding of program
execution sequence and bottlenecks.

Origin™ Development Environment

Origin™ Servers Technical Report 149

– I/O View to display read and write activity on a per-file-descriptor basis in a strip
chart.

– Heap View/Leak View to display a color-coded map, and listing, of the dynamic
memory of the program that clearly identifies memory leaks and erroneous frees,
correlated back to the responsible source code.

– Annotated source and disassembly views to display relevant source for
performance data, annotated with performance statistics. Where necessary, the
disassembled code is shown instead.

7.6.2 ProDev WorkShop Pro MPF

ProDev WorkShop Pro MPF provides a powerful visual interface into MIPSpro Power
Fortran 90 and MIPSpro Power Fortran 77 transformations to show which loops were
parallelized, which were not, and why they were not. In all cases where a loop cannot be
parallelized, WorkShop Pro MPF shows the obstacles to parallelization and allow the
user to rearrange the algorithm to circumvent them. Where possible, WorkShop Pro
MPF prompts the user for the additional information that will allow the parallel Fortran
phase to parallelize that code section.

WorkShop Pro MPF also allows control over user-directed MIPSpro Power Fortran 90
and MIPSpro Power Fortran 77 assertions and directives, as well as parallelization and
MP scheduling controls. Integration with the ProDev WorkShop Performance Analyzer
allows the user to identify the most expensive loops in the program and concentrate on
those, rather than waste effort tuning loops that do not use significant time during
execution.

To ease development, debugging, and performance tuning of parallel code, WorkShop
Pro MPF:

• Provides detailed listings of all loops in the program with parallelization status

• Allows filtering by loop state: unparallelizable, parallel, serial, or those for which the
user has requested modifications

• Allows filtering of information by source file or subroutine

• Shows detailed information about each loop

• Displays source code, highlighting the selected loop

• Lists transformed loops coming from the original loop

• Correlates the original source with the transformed source

• Shows obstacles to parallelization and other messages

• Shows actual performance cost for the loop

• Displays a list of all subroutines and files in the program

• Highlights obstacles to parallelization

• Shows source lines of obstacle locations in the code

• Shows relevant variable or subroutine names and their uses

• Works with the WorkShop Performance Analyzer

Origin™ Development Environment

150 Origin™ Servers Technical Report

• Allows sorting of loops by performance cost

• Annotates source display with performance information

• Allows straightforward composition of a custom DOACROSS directive

• Allows editing of parallelization condition

• Shows variables with read/write status within the loop, allows selection of state and
highlighting of uses of each variable within the loop

7.6.3 SpeedShop

The SpeedShop tools allow customers to run experiments and generate reports to track
down the sources of performance problems. SpeedShop consists of a set of commands
that can be run in a shell, an API, and a number of libraries to support the commands.

7.6.3.1 Main Commands

• ssusage

Thessusage command allows you to collect information about your program’s use of
machine resources. Output fromssusage can be used to determine where most resources
are being spent.

• ssrun

Thessrun command allows you to run experiments on a program to collect performance
data. It establishes the environment to capture performance data for an executable,
creates a process from the executable (or from an instrumented version of the
executable), and runs it. Input tossrun consists of an experiment type, control flags, the
name of the target, and the arguments to be used in executing the target.

• prof

Theprof command analyzes the performance data you have recorded usingssrun and
provides formatted reports.prof detects the type of experiment you have run, and
generates a report specific to the experiment type.

7.6.3.2 Experiment Types

You can conduct the following types of experiments using thessrun command:

• Statistical PC Sampling with pcsamp experiments

Data is measured by periodically sampling the Program Counter (PC) of the target
executable when it is in the CPU. The PC shows the address of the currently executing
instruction in the program. The data that is obtained from the samples is translated to a
time displayed at the function, source line, and machine instruction levels. The actual
CPU time is calculated by multiplying the number of times a specific address is found in
the PC by the amount of time between samples.

• Statistical Hardware Counter Sampling with _hwc experiments

Origin™ Development Environment

Origin™ Servers Technical Report 151

Hardware counter experiments are possible on R10000-based systems. Data is
measured by collecting information each time the specified hardware counter overflows.
You can specify the hardware counter and the overflow interval you want to use.
Counters monitor a variety of events, including instructions graduated and issued,
primary and secondary data and instruction cache misses, TLB misses, branch
mispredictions, and cache coherence events.

• Statistical Call Stack Profiling with usertime

Data is measured by periodically sampling the call stack. The program’s callstack data
is used to attribute exclusive user time to the function at the bottom of each callstack
(i.e. the function being executed at the time of the sample), and to attribute inclusive
user time to all the functions above the one currently being executed.

• Basic Block Counting with ideal

Data is measured by counting basic blocks and calculating an ideal CPU time for each
function. This involves instrumenting the program to divide the code into basic blocks,
which are sets of instructions with a single entry point, a single exit point, and no
branches into or out of the set. Instrumentation also permits a count of all dynamic
(function-pointer) calls to be recorded.

• Floating-Point Exception Trace with fpe

A Floating-Point Exception Trace collects each floating-point exception with the
exception type and the callstack at the time of the exception.prof generates a report
showing inclusive and exclusive floating-point exception counts.

7.6.3.3 Additional Commands

• pixie

Thepixie command instruments an executable to enable basic -block counting
experiments to be performed. If you usessrun, you will not normally need to call this
program directly.pixie reads an executable program, partitions it into basic blocks, and
writes an equivalent program (with a.pixie extension by default) containing additional
code that counts the execution of each basic block.

• fbdump

Thefbdump command prints out the formatted contents of compiler feedback files
generated byprof.

• squeeze

Thesqueeze command is used to allocate a region of virtual memory and lock the
virtual memory down into real memory, making it unavailable to other processes.

• thrash

Thethrash command is used to explore paging behavior by allowing you to allocate a
block of memory, then accessing the allocated memory to explore paging behavior.

Origin™ Development Environment

152 Origin™ Servers Technical Report

• ssdump

Thessdump program prints out formatted performance data that was collected while
runningssrun. This program is included for SpeedShop debugging purposes. You will
not normally need to use it.

7.6.3.4 API

The API is primarily available to allow you to usessrt_caliper_point to set caliper
points in your source code. See the SpeedShop User’s Guide for information on using
caliper points.

7.6.3.5 Supported Programs and Languages

The SpeedShop tools support programs with the following characteristics:

• Shared libraries (DSOs)

• Non-stripped executables

• Executables containingfork, sproc, system, or exec commands

• Executables using supported techniques for opening, closing, and/or delay-loading
DSOs

• C, C++, Fortran (Fortran-77, Fortran-90, and High-Performance Fortran), or ADA-
95 source code

• Power Fortran and Power C source code;prof understands the syntax and semantics
of the MP run-time, and displays the data accordingly

• pthreads: currently supported only with data on a per-process basis, not per-thread;
the behavior of thepthreads library itself is monitored just like any other user-level
code; future releases of the SpeedShop tools will provide per-thread support for
pthreads

• MPI or other message-passing paradigms: currently supported by providing data on
the behavior of each process; the behavior of the MPI library itself is monitored just
like any other user-level code

